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Résumé

Parmi la connaissance que nous avons des sens, l’odorat reste certainement celui
dont la compréhension reste la plus limitée. En effet, bien que de très nom-
breuses molécules odorantes aient été répertorié et que l’activation des nerfs
olfactifs ait été étudié, il manque un maillon essentiel à la compréhension de
l’odorat : la corrélation entre propriétés moléculaires et odeur ressentie. En effet,
sans compter la grande variabilité entre l’odorat de sujets aléatoires, il n’existe
pas de modèle permettant de déterminer quelle sera l’odeur d’une molécule.
En partenariat avec le Centre de Recherche en Neurologie de Lyon (CRNL),
le projet Olfamining vise à mettre en évidence la corrélation entre propriétés
moléculaires et odeurs et d’en exposer les applications dans le domaine de la
parfumerie ou de l’alimentaire. Le CRNL a donc créé et enrichi une base de
données sur un échantillon de plus de 1600 molécules odorantes décrites par
plus de 1700 propriétés physico-chimiques mais également l’odeur dégagée par
la molécule. A partir de cette base de données, nous allons utiliser et améliorer
des techniques issues de la fouille de données afin d’extraire les connaissances
implicites contenues dans cette base de données.

Abstract

Among human senses, sense of smell is the less understood. Even if many smelling
molecules have been precisely described and nervous mechanisms implied in
olfaction have been studied, there is a missing element in order to understand
completely olfaction : the correlation between molecular properties and smells.
Actually, excepting sense of smell variability among a sample of persons, there
is no model that predict a molecule smell based on molecular properties. With
the partnership of the Neurologic Research Center of Lyon (CRNL), Olfamining
project aims to find correlations between some molecular properties and smells
with all possible applications implied. CRNL has created and fulfilled a database
including more than 1600 smelling molecules, each of them described by more
than 1700 molecular properties. From this database, we will use and improve data
mining techniques in order to discover knowledge included in this database.
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Chapter 1

Introduction

Olfamining project Nowadays, many industrial products, like food or perfumes,
are composed of nice-smelling synthetic molecules in order to please the con-
sumer. It is a relevant challenge for perfume and food industries to be able to
predict the odor quality of molecules non-already synthetized. Nevertheless, the
few works lead into olfactory qualities characterization, like [10] or [2], consists
in the build of partitions of olfactory qualities which match which partitions
on molecular properties. The Olfamining project is an ambitious project which
aims to bring the missing link between the molecular properties and the human
perception.

olfactory qualities An olfactory quality is defined [10] as a significant smell dif-
ferent from the others like vanilin or anisic. There are also families of olfactory
qualities like fruity or green. The element that makes those qualities singular is
the olfactory receptors configuration they produce when a person smells them.
Actually, any human has olfactory perceptors at the base of the nose. olfactory
receptors can be seen as nets of that can only catch molecules of a particular
kind. When a receptor has captured a molecule, it sends a nervous message to
the brain which says that a kind of molecules has been captured. The brain
considers all kinds of captured molecules to translate it into a particular smell
as decribed in [11].

Scientific issues From a neurobiologic point of view, explained in [2], a gap exists
between the molecules and the olfactory receptor configurations they induce.
The answer to this unsolved question relies on the molecular properties but is
not trivial because, as said before, different molecules considering their shapes
or mass, may induce the same olfactory quality. A study on a large range of
physical and chemical properties is needed to find the link between molecular
properties and human perception as tried in [16].

The ARCTANDER dataset A dataset, labeled ARCTANDER, is composed of
1689 molecules, called dragons, physical and chemical descriptions. Built and
fulfilled by our partner of the Neuroscience Research Center of Lyon (CRNL),
it respects a standard classification of known olfactory molecules. It can be
represented as follow :



Dragon ID Physical and chemical properties Associated olfactory qualities
Identifier 1 .... qi, qj
Identifier 2 .... qi
Identifier 3 .... qi, qj , qk

.... .... ....

As we can see, the set of associated olfactory qualities to an identifier is a
subset of 74 qualities with a variable size. There are 1704 physical and chemical
properties to describe each dragons like the volume or the number of carbon
atoms.

The use of data mining techniques This dataset appears like the perfect support
to discover the relation between physical properties and olfactory qualities. Ac-
tually, there are enough properties to highlight patterns into them that induce
specific qualities with satisfying probabilities. This task fits with data mining
methods which aims to extract implicit knowledge from data, especially pat-
terns defined in [8]. In this study, we focus on descriptive techniques because the
aim is not to build a model for comparable datasets.

Formalization of the solution In order to explore only techniques which could
answer, even partially, to the problem, we need to set formally the form of our
solutions. Let D be a set of data. D can be seen as the cartesian product of
sets O and A where O = {o1, ..., on} is a set of objects, or individuals, and A
= {a1, ..., am} is a set of attributes which describe each object. Let an attribute
denoted class ∈ A be the attribute that interest us and V = {v1, ..., vp} be a set
of nominal values. The attribute class is a subset of V and all the ai are included
in <, with i ∈ [1, m]. We want to extract the association rules characteristic for
the attribute class with respect to D with the following representation :

ai1 = vj1 ,...., aik = vjk −→ class ⊆ V ,
ai1 ,..., aik ∈ A\{class}.
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Chapter 2

Preliminaries

Global notions from data mining must be introduced before the development of
related work.

Association rules Association rules are presented in [1] as statements like ”93%
of football fans look FIFA World Cup final”. Let consider the following dataset
and the value set O = {Object 1, Object 2, Object 3}:

Value
Object 1 A,B
Object 2 A
Object 3 A,B

The support of a value v is the cardinality of the subset of O where each
element is associated to v. For example support(B) = | {Object 1, Object 3} | =
2. An association rule, of the form valuei −→ valuej , determines the probability
that valuei implies valuej . The confidence of this rule is defined as follow :

confidence(valuei −→ valuej) =
support(valuei∧valuej)

support(valuei)

For example, the association rule confidence of A −→ B equals 2
3 .

Pattern mining formalization In order to understand how works subgroup dis-
covery, it is important to introduce a fundamental framework in pattern mining
presented in [8]. The pattern mining problems can be formalized as follow : Let D
be a dataset, L a class of sentences for defining subgroups of D and q a selection
predicate. Pattern mining problems are of the form if θ then ϕ with θ, ϕ ∈ L. ϕ
defines an ’interesting’ subset of D. Moreover, there is a relation order between
θ and ϕ denoted � : θ � ϕ means that θ is more general than ϕ and in the
opposite way ϕ is more specialized than θ. The solution of this kind of problem
is to find the theory of D included in L with respect to q. It corresponds to the
set Th(L,D, q) = {ϕ ∈ L | q(D,ϕ) is true}.



Chapter 3

Related work

1 Subgroup Discovery

Subgroups have been introduced in [5] and formalized in [17] like subgroups
among a population which are statistically the most interesting by their un-
usualness and their size with respect to a particular attribute of interest. The
considered population is composed of individuals, or objects, and a set of at-
tributes which describes each object. Different approaches exist for subgroup
discovery : on one hand, an exhaustive approach guarantee the optimal solution
with respect to an optimization criterion. On the other hand, many heuristics
exploit the unusualness and the size of subgroup in order to evaluate the quality
of subgroups generated from a given dataset.

We present in this part the formalization of the subgroup discovery (SD)
framework and a unifying framework with compatible works. Then, we explain
how subgroups are built while exploring the search space. We expose three im-
portant quality measures which define the interestingness of a subgroup. After
this, we introduce the heuristic approach of SD. Finally, we present three recent
and compatible works which lead to the solution of our issue: SD application to
numerical domains, exceptional model mining and diverse subgroup set discov-
ery.

1.1 Formalization of the SD framework

Before exposing subgroup construction and search space exploration, it is nec-
essary to formalize properly what is a subgroup. According to [17], subgroup
discovery can be formalized as, considering :

– a dataset D composed of individuals ti ∈ T described by attributes ai and
an attribute class ∈ A

– LF the language of all attribute-value pairs called features
– an evaluation function q which defines the interestingness of any bag of tuples

G ⊆ T according to class

We want to find :

– a set F ⊆ LF of features of maximum size | A | −1
– for each f ∈ F, q(f, D) > 0
– for any f

′ ∈ LF \ {F}, q(f
′
, D) < minf∈F q(f,D)

However SD is not the only framework which aims to find unusual groups
among a population. But we will show that all works are compatible.



Unification in rule learning framework There are many works under pat-
tern mining that are especially related to the discrimination of bag of tuples that
are statistically different considering a given model. In [4], the authors suggest
an unifying framework more specific than the global framework presented [8] for
those works. Let introduce first contrast sets and emerging patterns.

Contrast Set Considering the same dataset defined in subgroup discovery, a
contrast set is a conjunction of attributes and values that differ significantly
in their distributions across groups. The groups are defined by the attribute
of interest, denoted class in subgroup discovery. The representation of contrast
set can be the same than subgroup but the mining algorithm is different. For
example a rule X −→ Y is discarded if it does not satisfy the following test of
productivity :

∀Z ⊂ X : confidence(Z −→ Y ) < confidence(X −→ Y )

The value confidence(X −→ Y ) is a maximum likehood estimate of con-

ditional probability P(X|Y), which is estimated by the ratio count(X,Y )
count(X) . The

function count(A) returns the number of examples in the dataset where A is
true.

Emerging Pattern Emerging patterns are itemsets whose support increases mean-
ingfully from one data set to another. The aim is to obtain the differenciating
characteristic between given classes of data. In order to represent each class of
data, we can see an emerging pattern as an association rule with an itemset rule
antecedent and a fixed consequent : Itemset −→ D1. D1 is a given dataset we
want to compare with an other one D2. To measure the quality of an emerging
pattern, we evaluate the ratio of the support across D1 and D2 called growth
rate. The support defines the percentage of examples including a given item-
set in a set of examples. In practice this value is defined considering emerging
patterns like association rules:

GrowthRate(ItemSet,D1, D2) = confidence(ItemSet−→D1)
1−confidence(ItemSet−→D1)
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The different terminologies used for contrast sets, emerging patterns and
subgroups only come from the different communities which develop each of those
notions but they can be unified in a rule learning framework introduced in [9]
as follow :

Contrast Set Mining
Emergent Pattern

Mining
Subgroup Discovery Rule Learning

contrast set itemset subgroup description rule condition

groups G1, ..., Gn data sets D1 and D2 class/property C class/concept Ci

attribute-value pair item
logical (binary)

feature
condition

examples in groups
G1, ..., Gn

transactions in data
sets D1 and D2

examples of C and C examples of C...Cn

examples for which
the contrast set is

true

transactions
containing the

itemset
subgroup of instances covered examples

support of contrast
set on Gi, support of

contrast set on Gj

support of EP in
data set D1, support
of EP in data set D2

true positive rate,
false positive rate

true positive rate,
false positive rate

Table 1: Compatibility of definitions between contrast set, emerging pattern
and subgroup

With the same idea it is simple to translate each objective defined in the
different communities in a unique formalization of the expected result like illus-
trated in the following figure:

Contrast Set Mining
Emergent Pattern

Mining
Subgroup Discovery Rule Learning

Given examples in
G1 vs. Gj from

G1,...Gi

Given transactions
in D1 and D2 from

D1 and D2

Given in examples
C from C and C

Given examples in
Ci from C1 ...Cn

Find
ContrastSetik → Gi

ContrastSetjl → Gj

Find
ItemSet1k → D1

ItemSet2l → D2

Find
SubgrDescrk → C

Find
{RuleCondik → Ci}

Table 2: Compatibility of objectives between contrast set, emerging pattern and
subgroup

Now we need to see how these formalization can help in subgroup construc-
tion and how to explore the search space.
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Subgroups construction and exploration

Notations Let consider a dataset S where each individual is described by a set of
attributes A = {a1,...,an} and an attribute of interest denoted class. We call A
the description space and the attribute class, the model space. The model space
can be n-ary or numeric without repercussion on the SD framework execept the
choice of the quality measure. We define SD and SM respectively the projection
of S on the description space and on the model space. If we consider only SD as
dataset, the set of all attribute-value pairs as language L we have the formalism
of pattern mining framework less the selection predicate. It is actually the part
that makes SD singular. For each l ∈ L, we denote G the bag of tuples that
satisfy l and we consider a score, or quality, based on the unusualness of values
distribution in GM according to the values distribution in SM , with GM the
projection of G on the model space. In many algorithm, we want to consider
only the top-k subgroups considering the quality so the selection predicate can
be expressed like : is the current subgroup quality better than the k−th quality in
the resulting subgroups set. With this matching with pattern mining framework,
we can use the same approach.

Search space exploration Let consider the following example :

X Y Z Class
Object 1 x1 y1 z1 v1

Object 2 x2 y2 z2 v2

Object 3 x3 y3 z3 v3

The description space is composed of the attributes X, Y and Z and the
model space corresponds to the attribute Class. The language is composed of
pairs L = {X = x1, X = x2, ... }. We can then build the search space as a tree :

∅

X = x1

Y = y1

Z = z1 Z = z2 Z = z3

Y = y2 Y = y3 ...

X = x2
...

Here is just a part of the search space in order to show how work SD. It
consists in a breadth-first search in the complete approach. It is important to
notice that a edge is equivalent to a logical AND. So, while exploring the node
labeled Z = z1 in the partial example, it means considering all tuples which
satisfy the description X = x1 AND Y = y1 AND Z = z1. It corresponds to the
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tuple Object 1 and his projection on the model space is {v1}. The quality is then
based on {v1} considering {v1, v2, v3}. We show later that there is many quality
measures from statistics essentially that express the unusualness of a subgroup.

Quality measures Some quality measures can be used on different target
types but there are specific ones considering a given target type. The article
[14] presents seven of them but only three are interesting considering the exper-
iments presented further.

Meantest The MeanTest (MT) is a quality measure from statistics which fits
well on single numeric target. It quantifies the difference between the mean of
the target values in the entire set and in a given subgroup. The higher is the
MT, the more singular is the subgroup and the larger is his support. Actually,
for a given subgroup G, MT(G) close to 0 means that the distribution of target
values in the subgroup is very close of the distribution in the entire dataset so
the subgroup does not respect the unusualness criterion. Let S be a dataset, G
be a subgroup, | G | be G support size and µS and µG be respectively the mean
of target values in S and in G. The meantest of G can be formalized as follow :

MT (G) =
√
| G |(| µG − µS |)

Weighted Krimp Gain The Weighted Krimp Gain (WKG) is a quality mea-
sure, presented in [15], which uses KRIMP code tables as models. A KRIMP
code table is a list of itemsets where each itemset is associated to a code for a
given dataset. The list is ordered considering the most frequent itemsets in the
dataset and codes are chosen in order to use the minimal number of bits for
the entire dataset encoding. The encoding simply consists in the substitution of
the itemsets by their associated code. Relying on this concept, WKG evaluates
the quality of a subgroup if the KRIMP code table or compressor, for a given
subgroup G, encodes better the tuples in G considering the encoding of G using
the compressor of the entire dataset. Let S be a dataset, G be a subgroup and
L(G | CTx) be the size, in bits, of G encoded with the code table CT which is
optimal for a set of tuples x. WKG can be defined as follow :

WKG(G ‖ S) = L(G | CTS)− L(G | CTG)

Weighted Kullback Leibler divergence The Kullback Leibler divergence (KL), in-
troduced in [6], is a measure from statistics which quantifies the average number
of extra bits necessary to encode a sample of a probability distribution P using
the optimal encoding for a probability distribution Q instead the optimal one
for P. Let S be a matrix with l columns and m lines. Let ci be and tj be respec-
tively the i− th column and the j − th line. Finally let X be a random variable
taking values on a domain V = {v1, ..., vn}. We assume that each value S(i, j)
is a sample of X. Let consider the following example with l = 4, m = 6 and V
= {0, 1} :
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c1 c2 c3 c4
t1 1 0 1 0
t2 1 1 0 0
t3 0 0 0 0
t4 1 0 1 1
t5 0 1 0 1
t6 1 1 0 1

Then let q be the set of all tj and p be the subset {t1, t2, t3}. Let the function
Distr(p) associates each value appearing in p with her occurence. In this example
we have for p and the following Distr :

Distr(p) = {(0, 8), (1, 4)}, Distr(q) = {(0, 12), (1, 12)}

Let simplify the notations and consider the frequency instead of the oc-
curences. We define P and Q as follow :

P = {(0, 2
3 ), (1, 1

3 )}, Q = {(0, 1
2 ), (1, 1

2 )}

The optimal encoding for each value in probability distribution is given by
her entropy. So, we can define the number of bits CodeProb

v necessary to encode
a value v associated to a probability pb(v) in a probability distribution Prob
with the formula :

CodeProb
v = −pb(v) log2(pb(v))

In the example we have the following code lengths :

CodeP0 = − 2
3 log2( 2

3 ) = 0.39
CodeP1 = − 1

3 log2( 1
3 ) = 0.52

CodeQ0 = CodeQ1 = − 1
2 log2( 1

2 ) = 0.5

Finally let tProb
j be the j− th line of S encoded with the optimal codes of the

probability distribution Prob. In our example we need the following number of
bits to encode t1 according to P and Q :

tP1 = 2 ∗ 0.39 + 2 ∗ 0.52 = 1.82

tQ1 = 4 ∗ 0.5 = 2

We can then define the average difference between the code lengths using the
KL divergence just knowing P, Q and the domain of the random variable with
the formula :

KL(P ‖ Q) = Σ
x
P (x) log2

P (x)
Q(x)

12



Assuming that the each attribute-value pair is an independant sample of a
random variable X, we want to estimate the divergence between a subgroup G
and the entire dataset S. Let consider S as the joint of a description space D
and a model or target space M. The description space is composed of description
attributes Di and model attributes Mi. Now let consider GM and SM as the
projection of G and S on the model space. Instead of computing the probability
distribution for GM and SM we use the associativity of the KL divergence to
estimate the exceptionality of G. Actually, if we consider X as the set of random
variables xi and each column in SM is a sample of an xi, we can compute the
exceptionality of G from the KL divergences of each column. Let P̂ (Mi = vi)
be the probability associate to a value vi, P̂ (Mi = vi) is computed as follow :

P̂ (Mi = vi) = |{t∈S|tMi=vi}|
|S| . The KL divergence ofGM and SM is then described

as the sum of KL divergence of each Mi. In [13], the author suggested a variant
of KL which includes the size of the considered subgroup in order to balance
between KL divergence value and size of the subgroup, smaller subgroups tend
to have greater KL divergence values. WKL is then defined as :

WKL(GM ) = |G|
|S|

l

Σ
i=1
KL(P̂ (GMi) ‖ P̂ (SMi))

Heuristic approach Until now we only considered an exhaustive search space
exploration but it is easy to see that the search space grows deeply with the de-
scription space and each attribute domain cardinalities. So, heuristic algorithms
have been developed in order to increase the scalability of SD.

Beam search One tool from graphs is the use of a beam in order to generate
a fixed number of candidates at each step. Let take back the example in 1.1,
the first candidates were the 9 attribute-value existing pairs and we generated
children for each of them. But now, if we decide to consider only the 3 best
candidates, according to their respective qualities, to generate children nodes.
Same thing at each level in the search space, we reduce significantly the total
number of candidates. The beam size is chosen considering a balance between
computation time and subgroups qualities.

Other heuristic approaches exists like the optimistic estimate that is pre-
sented in the next work introducted in [3].

1.2 Subgroup discovery in numerical domains

In many cases considered until now in SD, we assumed that the values of the
attributes are nominals. It is then simple to formalized subgroups forms with the
formula above. But in practice, we often need to deal with continuous attribute
values. In this case, the former formalism does not work anymore because the
great majority of values are distinct so an another mechanism of exploration is
needed to extract subgroups among a dataset.
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Discretization approaches The main idea to solve that problem is to dis-
cretize, which means turn a database including continuous values into an almost
equivalent database, from a data perspective, including only nominal values in
order to link with the known formalization of subgroup discovery. The objective
of the method is to replace all continuous values by a finite set of intervals. This
set is defined in order to cover all continuous value and to respect an optimization
criterion ε, considering intervals of the following form :

[vimin , vimax ],

we impose the property on the given criterion ε:

∀i, vimax - vimin = ε

or considering S as the set of object which can be described by the interval
[vimin

, vimax
]:

∀i, |S| = ε

Even if this discretization method works, the techniques to generate these
intervals ignore intervals which overlap some others. Let T ⊂ < be a finite
ordered set,the intervals considered are the following ones :

]−∞, t1], ]t1, t2],..., ]tn−1,∞]

This approach has the drawback to provide only suboptimal results because
it implies a loss of information more or less significant depending on the choice
of the optimization criterion. So, while using this discretization, the choice of
the optimization criterion is balanced by the expected accuracy of the results
and the number of intervals generated, because the more intervals there are the
more it takes time to find all of them.

Intervals overlap approach : MergeSD A new approach suggested in [3]
is to consider some intervals which overlap some others in order to find the
most optimal results. The idea is to let the datbase with continuous values and
compute a discretization on-the-fly by finding some bounds which include the
continuous value with respect to an optimization criterion. Let D be a database
with continuous values, sd a subgroup description and sd’ a refinement of sd
denoted sd’ � sd, if sd is a subset of sd’. A quality function q defines the inter-
estingness of a subgroup. An optimistic estimate denoted Θ is a function that
provides a bound of quality of all refinements of sd. Θ must satisfy the following
condition :

∀ subgroups sd, sd’, sd’ � sd =⇒ Θ(sd) ≥ q(sd’).

Then, the aim is to define the quality of a subgroup sd in the database D.
Let P be a set of split points, tl and tr two split points of P with the property
tl < tr and A a numerical attribute from D.Let sd and sd’ be two subgroups of

14



lenght ≤ k, such that sd � sd’∧ A ∈ ]tl,tr]. For every t’ ∈ [tl,tr] the quality of
sd on D is bounded by maxQ(D, k, sd’∧ A ∈ ]tl,t’], P) + maxQ(D, k, sd’∧ A ∈
]t’,tr], P) where maxQ(D, k, sd, P) := max

sd∗∈refinements(sd,D,k,P )
{q(D, sd∗)}. The

function refinements(sd, D, k, P) corresponds to the set of all refinements of sd
with a length ≤ k and with interval endpoints in P.
In order to keep a trace of all bounds generated, a special data structure, denoted
BoundTables is used. A BoundTables is a 2-D table and there is one for each
attribute. The initial value of BoundTables[i, j] = 0 if i = j and ∞ in the other
cases. When a value maxQ for the refinements of A ∈ ]ti, tj ] improves the former
value, an update can be done for all super-intervals of A ∈ ]ti, tj ]; it means for
all A ∈ ]t′i, t

′
j ] such i’ ≤ i and j’ ≥ j.

1.3 Exceptional Model Mining

Multi-labeled model space

The existing works Like presented in [12], the main categories of works in learn-
ing from multi-label data are oriented around multi-label classification and label
ranking. Multi-label classification looks for the creation of a model which is a
bipartition between relevant and irrelevant labels in a given dataset. Label rank-
ing algorithms build a hierarchy based on the relevance of labels according to a
query instance. So, works focused on multi-label data mining are not adaptable
to SD for two reasons :

– We do not consider an order relation between the labels.
– We do not want to ignore a partition of labels. All of them can be relevant.

Statistics on multi-label data Nevertheless, two interesting concepts are intro-
duced in [12] : the label-cardinality and the label-density. Actually those two
parameters have an influence on multi-label data mining performances. Let D
be a dataset composed of n individuals and let | li | be the occurence of a label
l in the i-th individual. The label-cardinality is then defined as :

label − cardinality(l) = 1
m

m

Σ
i=1
| li |

Considering all labels l are included in a set of labels L with a cardinality
| L |, the label-density is defined as follow :

label − cardinality(l) = 1
m

m

Σ
i=1

|li|
|L|

We have the elements to deal with the given database in the global framework.
Actually the tools already developed around the subgroup discovery are enough
efficient to answer our issue. Nevertheless, the multi-labeled model attribute have
not been adressed in our lectures. Even if multi-labeled data can be mined for
classifiers we do not have the algorithmic base to consider a multi-labeled model
space. This is why an adaptation of the database is needed.
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EMM framework Introduced recently in [7], Exceptional Model Mining (EMM)
is a framework that generalized SD. Actually, until now we see the model space
as a single attribute but with EMM we can consider a set of attributes for the
model space. In EMM, we want to extract subgroups that have an exceptional
model space configuration according to a given model. Nevertheless, the EMM
framework is perfectly equivalent to the SD framework in terms of search space
and subgroups construction. The element which differs is the quality measure.
We can make a distinction between two kinds of EMM quality measures :

– Aggregation of qualities considering quality evaluation on each attribute
included in the model space.

– Use of compression matrix methods in order to compare the gain between
the compression based on a subgroup and the compression based on a given
model considering their projections on the model space.

Considering that framework, we can turn our multi-labeled attribute into a
set of single-labeled attribute and apply EMM.

1.4 Diverse Subgroup Set Discovery

Among recent works dealing with EMM, one is particularly interesting because
of his flexibility. Actually, in [14], an approach able to handle numerical domains
and managing the non-redundancy of the discovered subgroups is presented. The
aim is to handle very large data with a generic subgroup selection heuristic. This
heuristic is based on a beam search in order to balance time of execution and the
result quality. Moreover, this algorithm allows the application of SD or EMM
without distinction and provides many quality measures.

Non-redundancy management When data are large and complex, a basic
top-k mining gives as result a set of potentially highly redundant subgroups.
Actually, a top-k mining consists in a top-down search like explained in the
previous part. The search starts with the empty set and a refinement operator,
in the first step it builds the descriptions with only one feature (attribute-value
pair). Then for a given k, the refinement the k-th best subgroups are selected.
At the next level, the top-k list is uptated if there is better subgroup according
with a quality measure. But results are potentially highly redundant due to the
density of the data and less represented but interesting results are ignored. The
evaluation of redundancy, presented in [14], relies on the covers of subgroup sets.
Assuming that an ideal subgroup set uniformly cover all tuples of a dataset. The
cover count of a tuple is the number of times it is covered by a subgroup in a
subgroup set. Given a dataset S and a subgroup set G, the expected cover count
ĉ is defined for a random tuple t ∈ S as :

ĉ = 1
|S| Σt∈S

c(t, G)

The cover count c is defined as follow :

16



c(t, G) = Σ
g∈G

sg(t)

So the cover redundancy is defined for a given dataset S and a subgroup set
G as follow :

CRS(G) = 1
|S| Σt∈S

|c(t,G)−ĉ|
ĉ

Non-redundant GSD The non-redundant generalised subgroup discovery (GSD)
is the term used to highlight the fact that it covers SD and EMM. In the case
of SD, two degrees of redundancy may exist :

– Subgroup descriptions redundancy : All substantially different descriptions
are allowed but potential similarities in covers are ignored. Actually, it is
possible that a subset of rows are covered by two different descriptions.
The elimination of potentially redundant description works on the quality-
ordered list of subgroup. A candidate is discarded if at least all the features
(attribute-value pair) but one is equivalent to an other description already
selected.

– Subgroup cover redundancy : All substantially different covers are allowed.
This verification is satisfactory to ensure non-redundant SD. Compute a
cover-based subgroup selection is longer than considering the descriptions
but provide more diverse results. In order to compute the difference of cover
between a subgroup and a set of already selected subgroups Sel, a score is
calculated. This score is defined as follow for a subgroup G compared to a
set of subgroups Sel :

Ω(G,Sel) = 1
|G| Σt∈G

αc(t,Sel)

The weight parameter α is included in [0, 1]. The larger is the score, the less
often tuples in G are already covered by subgroups in Sel. If G covers only
tuples uncovered by subgroups included in Sel, Ω(G,Sel) = 1. At each iter-
ation, the subgroup which maximize Ω(G,Sel) is selected until the wanted
number of subgroups is selected.
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The DSSD algorithm The pseudo code of the DSSD algorithm presented in
[14] is the following one :

Algorithm 3.1: DSSD diverse subgroup set discovery

Input : Dataset S, quality measure ϕ, parameters j, k, mincov, maxdepth and
subgroup selection parameters P
Output : R, an approximation of the top-k subgroups Gk

function DSSD(S, ϕ, j, k, mincov, maxdepth, P )
R ←− ∅, Beam ←− {∅}, depth = 1
while depth ≤ maxdepth do

Cands ←− ∅
for all b in Beam do

Cands ←− Cands ∪ GenerateRefinements(b, mincov)
end for
for all c ∈ Cands do

UpdateTopK(R, j, c,ϕ(c))
end for
Beam ←− SubgroupSelection(Cands, ϕ, P )
depth ←− depth + 1

end while
for all r ∈ R do

ApplyDominancePruning(r, ϕ)
end for
R ←− RemoveDuplicates(R)
R ←− SubgroupSelection(R, ϕ, P )
return R

end function

The exploration space can be seen as a tree where the root is the empty
set and each level represents a new refinement step. A refinement consists in
the add of one feature, for example attributei < 3, in order to build a new
subgroup description as the conjunction of those features. At each refinement
step, the quality measure is computed for all candidates (at the first step it means
all possible features) and only the top subset of them is included in the beam
according to a given size for the beam. Then each candidate is the beam is used
to generate the next refinements with respect to a minimum cover, in number of
tuples, mincov. The top-k list is updated if some of the new refinements overtake
already selected subgroups according to the quality value. Selected subgroups are
also analyze considering the potential redundancy considering a given parameter
(one of the three kind of redundancy level described earlier). All these steps are
repeated until a defined maxdepth is reached.
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Chapter 4

Experiments

In this part, we present the experiments made on the dataset given by neuro-
scientifics and described in the introduction. There are three main experiments
:

– The characterization of olfactory qualities considering the entire set of qual-
ities as model space

– The characterization of olfactory qualities considering each of them as model
space

– The characterization of the hedonic number, or Hedo number, which is a
subjective numerical value associated to a molecule. The greater is the Hedo
number, the more pleasant is a molecule smell. This experiment requires an
other dataset composed like the ARCTANDER dataset but instead of the
associated olfactory qualities, the Hedo number is defined for each molecule.

For each of these experiments, we used the free implementation in C++ of
the generic algorithm DSSD presented in 1.4. All post-treatments have been
implemented externally in JAVA.

2 Characterization of olfactory qualities with EMM

Interest and objectives

The aim of this experience is to find the most interesting subgroups. So we
proceed here to an EMM presented in 1.3. For the expert of the domain, it
is relevant to find subgroups in that dataset because it could establish rules
from physical and chemical properties to qualities and it could show strong
correlations between subsets of qualities.

Dataset and experimental protocole

The dataset The considered dataset can be seen as a the join of the following
three parts :

– A first row labeled Dragon ID which only corresponds to the identifiant of
each tuple.

– A collection of 1704 numeric attributes labeled Attri which are physical and
chemical properties of molecules and correspond to the description space.



– A multilabeled attribute labeled Code quality which takes values in the pow-
erset of qualities that describe a molecule. Each value is a non-empty subset
with a variable size depending on the molecule. Each Code quality value is
in [1; 74]+ and can be associated to more than one molecule. This attribute
corresponds to the model space. The model space must be considered as
nominal and not as numeric because there is no hierarchy between his values
and each code is matched with a label like ”vanilin” or ”acid”.

The main settings of DSSD algorithm we fixed are the following ones :

– The top 100 subgroup set is returned.
– The quality measure is WKL presented in 1.1.
– The beam width is 100.
– The maximum depth which corresponds to the maximum number of features

in each subgroup description is 10.
– The minimum cover for every considered quality value is 10 tuples.
– Redundancy management is more efficient while using a subgroup cover-

based redundancy management even if theoretically it should better while
using compression.

Data transformations In order to represent in our relational database the
multilabeled quality attribute, a table composed of the two columns Dragon ID
and Code quality is created. The first column has possibly a same value many
times in order to express that a molecule is related to multiple qualities. But each
Dragon ID/Code Quality pair is unique. The most efficient way to transform
those data in order to compute EMM is to binarize the model space. It means
that for each quality value (a code i included in [1; 74]), a binary attribute
Qualityi is created and is true if the Dragon ID is associated with the quality
code i else false. There is also a selection among description space based on
mathematical correlation between numerical attributes. This selection allows us
to use only 243 numerical attributes as description space in order to reduce
computation time. Actually, each attribute will be discretized on-the-fly and
all attribute/discretized value pairs will be rated in the first step of the DSSD
algorithm.

Parameters influences

In this section, we presents the influence of parameters on the free implementa-
tion of DSSD. Because most of them have already been experimented in [14], we
present only the influence of attributes number in description space. For this,
we prepared 4 selections of 23, 43, 103, and 243 attributes. Three attributes
are mandatory because they are basic indicators of each molecule. The other
attributes have been selected with the help of expert of the domain in order
to extract 40 significant attributes (for the two smallest selections) and by the
extraction of uncorrelated attributes for the biggest selections. We studied es-
pecially the variation of runtime, average subgroup quality, average subgroup
descriptions length and redundancy.
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runtime evolution On the graphic below, we can see that the runtime increases
with the number of attributes and follows an exponential variation. Considering
the exponential evolution of the runtime, we can not test with the full attribute
set included in the ARCTANDER dataset because it would take months of
execution.

quality evolution The subgroup quality follows a variation close to a linear
one. But we can notice that the average support of subgroups globally decreases
and it is logic considering that the more attributes there are the more restrictive
are the generated conditions. So it means that the positive variation of subgroup
quality is due to the exceptionnality of model space configurations like presented
in 1.1.

description length evolution Like shown by the figure below, the more at-
tributes there in the description space, the longer are high quality subgroup
descriptions.
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redundancy We observed that non-redundant GSD, introduced in 3.1, can not
provide only non redundant subgroups. But the greater is the description space,
the less redundant are subgroups.

– For the first selection (23 attributes), the subgroups present redundancy on
descriptions and logically on covers. This redundancy comes from the tight
variety of distinct subgroup descriptions tested. Nevertheless, this redun-
dancy concerns less than 10% of the top-100 subgroup set.

– For the three greater selections, there is some cover redundancy induced by
maximum description length parameter. Actually, while considering a set of
tuples described by a set of 43 to 243 attributes, we can easily guess that
we can find a pattern among those attributes with a length greater than 10,
which is our maximum description length parameter. This is why two distinct
descriptions can cover exactly very close bag of tuples and are undetectable
by the non-redundancy management.

Analysis of results

The DSSD algorithm provides as results the following elements at the end of the
execution :

– The top 100 subgroup descriptions.
– The support of each subgroup in the top 100. The support is represented by

a binary list : 1 if the row satisfies the current subgroup description else 0.
– The subgroup description size, the quality and the support size of each sub-

group in the top 100.
– The number of rows, that we call OccurGqi , covered by each quality qi in the

subgroup G support. Remember that many qualities can cover the same row
but of course a quality can have an empty cover in a given subgroup support.

– The number of rows covered by each quality in the entire dataset.

These data defines subgroups according to the given parameters but they
involve readability and correctness issues.
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The limits

Actually, for an expert of the neuro-biologic domain, the results are not clear
and do not appear reliable because a description is not explicitly associate to a
subset of olfactory qualities. It is not correct to consider every quality qi which
satisfies OccurGqi > 0 for a given subgroup G. The descriptions do not aim to
isolate strictly a subset of qualities but to maximize the unusualness of qualities
distribution even if it means including qualities that are not really specific in this
subgroup. Moreover, the qualities do not have equal distributions in the entire
dataset, some of them are over-represented (quality ”floral” covers a quarter of
the entire dataset) and many others are under-represented (only cover 10 to 50
rows in the entire dataset). Moreover, one aim of this experience is also to define
correlation between qualities in the model space but the use of WKL implies
that model space attributes are independant.

3 Characterization of olfactory qualities with SD

Interest and objectives

After the first experiment, which was the most intuitive considering the global
objectives, we defined according to the experts of the domain that it is par-
ticularly interesting to find subgroups for each quality considered individually.
It could highlight physical and chemical properties depending on the olfactory
quality. Moreover, the applications of those kind of very deterministic rules are
valuable from a chemical point of view. So, the aim is clearly different because
we do not try to find subset of olfactory qualities but find significant descriptions
for each of them.

Dataset and experimental protocole

The datasets The input dataset is the same as considered previously but we
derivated datasets for each quality. The settings are also the same because the
WKL can be used on a single binary target without modifications.

Data transformations On the description space, the exact same selection is
done. For the model space, we generated 74 datasets. Each dataset has as model
space a single binary attribute which represents an olfactory quality. The model
attribute equals true if the quality is associated to the molecule else false.

Parameters influence

In this experiment, the parameters are implicit because it is essentially the sup-
port of each olfactory quality which plays on the runtime and the average sub-
groups quality. We expose below this influence for the 74 olfactory qualities
included in the ARCTANDER dataset.
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runtime evolution Each point represents the runtime for an olfactory quality
represented on the X axis by her relative support in the entire dataset. We can
observe on the graphic below that the runtime follows globally a logarithmic
increase considering the olfactory qualities supports in the entire dataset. It is
important to highlight the fact that in this experiment, multiple DSSD execu-
tions have been done simultaneously. So the values can not be compared with
the former experiment.

subgroup quality evolution Same representation than earlier for the olfac-
tory qualities. Subgroups qualities follow a linear increase considering olfactory
qualities supports. It is totally logical considering the WKL formula presented
in 1.1.
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Analysis of results

Like in the former experiment, the DSSD algorithm provides the same results but
instead of each OccurGqi and number of rows covered by each quality, it provides
the number of true cases included in each subgroup and the number of true cases
in the entire dataset, considering the projection of subgroups and the dataset
on the binary model space. The results are easier to understand considering the
former experiment. Of course, for each olfactory quality, subgroups with high
quality are the better.

The limits

Considering the expectations of the olfaction experts, finding subgroups with
their qualities and supports is not satisfying. Actually, among a subgroup set
for a given olfactory quality, quality values are useful to compare subgroups but
are useless while comparing with a subgroup set for an other olfactory qual-
ity. It simply comes from the fact than olfactory qualities distribution is not
balanced and quality measures relies on this distribution. So, in order to deter-
mine which olfactory qualities are the best defined by their respective subgroup
set, we will be more interested the average confidence of the association rules
subgroupdescription −→ olfactory quality of all subgroups included in a sub-
group set.

4 Characterization of Hedo number with SD

Interest and objectives

The Hedonic number, or Hedo number, is a value that rates a molecule on
an olfactory point of view. This value is based on the opinion of a sample of
population. This experiment has two interests : on one hand, it is very relevant
for the experts of the domain to determine descriptions which lead to pleasant or
stinking smells. On the other hand, it is interesting for us to perform subgroup
discovery on a numeric model space in order to test the limits of MeanTest and
determine how we could improve the results.

Dataset and experimental protocole

The dataset The dataset considered in this experiment composed in two parts.
The first part is a description space composed of 357 uncorrelated attributes that
describe each molecule. The Hedo value is a real in [0.0; 0.8], in our dataset, the
greater is the Hedo value, the more pleasant the quality smells. In accordance
with expert, we defined stinking molecules like all molecules with a Hedo number
under 0.3 and pleasant molecules like ones with a Hedo number greater than 0.6.
All molecules between those values are considered neutral.
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Parameters The main settings of DSSD algorithm are the following ones for
each variant of this experiment:

– The top 100 subgroup set is returned.
– The quality measure is the MeanTest presented in 1.1.
– The beam width is 100.
– The maximum depth which corresponds to the maximum number of features

in each subgroup description is 10.
– The minimum cover for every considered quality value is 10 tuples.
– Redundancy management is more efficient while using a subgroup cover-

based redundancy management.

Analysis of results

The DSSD algorithm provides as results the following elements at the end of the
execution :

– The top 100 subgroup descriptions.
– The mean of Hedo numbers included in each subgroup.
– The subgroup description size, the quality and the support size of each sub-

group in the top 100.
– The mean of Hedo numbers for the entire dataset.

The first result that appears is that we define only a very tight range of
Hedo number so the subgroups does not fulfill the aim to describe pleasant and
stinking molecules.

Considering the global Hedo distribution in the dataset, we can guess that
there are characterization for stinking and pleasant molecules.
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The limits

The limitation is clearly, in this experiment, the ability to extract characteriza-
tions for extreme values considering a domain. It comes from the distribution
which is not fair enough. Actually, almost 80% of molecules are neutral. So an
other approach is needed to reach the objectives.

5 DSSD limits

Through these experiments, we have already extracted subgroups and analyze
them in function of some parameters. But we see also that we are not able to
answer properly to every questions raised by the Olfamning project for several
reasons :

– While considering the multiple attribute model space, we are unable to de-
termine the correct subset of olfactory qualities described significantly by
a subgroup description. Moreover, we miss the property which makes the
distinction between olfactory qualities significantly described or not by a
description.

– With the same model space, we are unable to highlight correlations between
attributes included in the model space, which is an aim of this experiment.
It is induced directly by the quality measure which is WKL so we need to
build a method to discover those hypothetic correlations.

– Until now, the divergence of the model space is based, in EMM, of the mean
of each model attribute divergence. But if we want to focus on a subset of
model attributes, we must reconsider the WKL.

– In order to describe olfactory qualities, we need to know which ones are
described with an important accuracy. It means to determine for each ol-
factory quality and for each subgroup the confidence of the association rule
subgroupdescription −→ olfactory quality. With those confidences we can
then compare the global quality, or accuracy, of each subgroup set. We need
to formalize the computation of confidence from subgroups.

– Finally, concerning Hedo charaterization, we need to reconsider the Mean-
Test in order to find descriptions for pleasant and stinking molecules. If it
does not bring satisfying results we should consider other options.

27



Chapter 5

Contributions

6 Multi-labeled model attribute management

6.1 Definition of model attribute value

The aim in this first contribution is to define the right subset of model at-
tributes while using EMM with WKL as quality measure. Actually, an at-
tribute can be considered specific for a description if the confidence of the
rule description −→ attribute is important. This is why we choose to use the
GrowthRate in order to determine if a model attribute is specific to a subgroup
or not. It has the advantage to ignore the difference of true cases distribution
between model attributes. Let G be a subgroup, Ḡ be the entire dataset less G
support and | G | and | Ḡ | be the respective support sizes of G and Ḡ, the
GrowthRate of a model attribute ma is defined as follow :

GrowthRate(ma) =
OccurGma

|G| ∗ |Ḡ|
OccurḠma

The GrowthRate simply determines the ratio between the probability that
the attribute is true in the subgroup and the same probability in the entire
dataset.

6.2 Model attributes correlation

While computing EMM, each attribute in the model space is considered inde-
pendant of the others like explained in 1.1. Even if there is no hierarchy in the
model space, some model attributes may be correlated, it means that one model
attribute is true only when an other is true too. In order to extract these infor-
mations, we need to compute the intersections of model attributes supports in a
considered subgroup. The computation of these intersections is in three phases :

– First, the support of each model attribute represented by a subgroup is
extracted on the entire dataset.

– Then, the intersections IGmai
between the subgroup G and each represented

model attribute mai is computed.
– Finally, the intersections between the IGmai

and IGmaj
is computed for all

represented model attributes mai and maj . If the intersection between IGmai

and IGmaj
covers more than a given threshold β considering IGmai

or IGmaj

then the model attributes mai and maj are considered correlated. It means
that G represents significantly the subset {mai, maj} and not the model
attributes separetely.



6.3 Post-treatment application

Considering the definition of α and β, we can apply it to the first experiment
as post treatment. After the computation of this post-treatment, which has an
execution time really smaller than the DSSD algorithm, we have readable and
accurated results. The thresholds α and β are respectively 5 and 80 and we
find descriptions for 34 qualities on 74 but all uncorrelated. For example, our
post-treatment gives the following results :

Description :
Me5 > 0.00000 and SpAD A < 1.66100 and PHI < 20.19150 and Se0 < 0.17150
and Sv05 > 6.76050 and Se95 < 3.37800 and BLI < 2.90350 and Se19 < 0.73200
It defines significantly the following qualities :
Quality almond significantly represented with respective growthrate 7.661071428571429
Quality anisic significantly represented with respective growthrate 5.5441964285714285
Quality aromatic significantly represented with respective growthrate 5.040178571428571
Quality hay significantly represented with respective growthrate 9.072321428571428
Quality leathery significantly represented with respective growthrate 20.160714285714285
Quality medicinal significantly represented with respective growthrate 14.515714285714285
Quality peperry significantly represented with respective growthrate 12.096428571428572
Quality phenolic significantly represented with respective growthrate 22.176785714285714
Quality piney significantly represented with respective growthrate 6.336224489795918
Quality smoky significantly represented with respective growthrate Infinity
Quality tarry significantly represented with respective growthrate 42.3375
Quality tobacco significantly represented with respective growthrate 5.376190476190476
Quality vanilin significantly represented with respective growthrate 6.720238095238095

This case is interesting because it represents all the possible results we can
have after the post-treatment. The values are at least α and at most Infinity
which means that the entire support of a quality is included in a given subgroup
support. At least one quality is significantly represented according to α and some
of them may be correlated according to β. But considering that a lower value
of β means less accurate results concerning the correlation, we consider now the
adaptation of WKL for multi-label attributes.

6.4 Generalization of WKL

Until now we have considered the divergence of the model space like the mean of
all model attribute divergences as presented in 1.1. But depending on the model
space, it is not relevant to consider the global divergence as the sum of each model
attribute divergence. This is why we suggest to consider an abstract aggregator
function ϑ. This function takes the set of all model attribute divergences and
computes a global divergence that respects a maximal number of model attribute
to consider k.

WKL(GM ) = |G|
|S|ϑ

k(KL(P̂ (GMi) ‖ P̂ (SMi))),∀i < k
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We will consider the following ϑ values : Σ, max and min. The function
maxk means that we consider only k-th most divergent model attributes to com-
pute global divergence, mink means we consider the k-th less divergent model
attributes and Σk means we consider all model attributes. Let m be the cardi-
nality of the model space, the classic WKL can be defined as :

WKL(GM ) = |G|
|S|Σ

m(KL(P̂ (GMi) ‖ P̂ (SMi))),∀i < m

In the case we consider that each model attribute is a value of a single multi-
label model attribute, it is more interesting to consider the global divergence of
the model space as the sum of the most divergent model attributes. The question
is then how to define the number of most divergent model attributes to consider.
This is where we can make the link with multi-label data mining. Considering
that label cardinality, presented in 1.3, is the average number of labels associated
to an individual, we consider the closest integer greater than the label-cardinality.
So, let k be the closest integer greater than the label cardinality of a dataset S,
we define WKL as follow :

WKL(GM ) = |G|
|S| maxk(KL(P̂ (GMi) ‖ P̂ (SMi))),∀i < k

6.5 Application of generalized WKL

In the ARCTANDER dataset, the label-cardinality is 2.88 so we will consider
the three most divergent model attribute to compute the WKL. With the same
parameters and similar rutimes, we can observe that the results are really differ-
ent. First, we only characterize 11 olfactory qualities on 74 and only 5 of them
are characterized with WKL definition presented in [13]. Then, we have many
correlated attributes with the same β. Here is an example of result :

– Description :
Se59 > 30.93650 and Mv4 < 4.50300 and Se19 < 0.76700 and IDET <
11.63700 and Sv4 < 6.00000 and S0K > 0.55900 and Se05 < 0.10400
It defines significantly the following qualities :
Quality peperry and Quality woody significantly represented with respective
growthrates 13.193277310924369 and 7.380854439677969
Quality sandalwood and Quality woody significantly represented with re-
spective growthrates 65.96638655462185 and 7.380854439677969
Quality camphor significantly represented with respective growthrate 8.57563025210084
Quality violet significantly represented with respective growthrate 6.5966386554621845

Even if there are less olfactory qualities found with this WKL computation,
the results are more accurate and expose some correlations among labels. It is
also important to notice that subgroups supports are 3 to 5 times smaller than
subgroups extracted with the classic WKL definition. In order to validate this
approach in this case we also apply the same protocole with the two following
variants :
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WKL(GM ) = |G|
|S| max1(KL(P̂ (GMi) ‖ P̂ (SMi))),∀i < 1

WKL(GM ) = |G|
|S| min1(KL(P̂ (GMi) ‖ P̂ (SMi))),∀i < 1

It consists to consider respectively the most divergent model attribute and
the less divergent attribute as global model space divergence. The results are
interesting :

– While considering only the most divergent attribute we extract the same
subgroups descriptions extracted while considering the 3 most divergent at-
tributes. The difference is in growthrates. Actually, when we consider only
the most divergent model attribute, subgroups define often olfactory qual-
ities with infinite qualities but there is less olfactory qualities defined by a
description. It validates the fact that considering only the k-th most diver-
gent attributes lead to better results.

– This hypothesis is definitely confirmed while considering the less divergent
attribute. Even if 21 olfactory qualities are defined, growthrates are smaller
than earlier and there is an important frequency of redundant subgroups.

7 From subgroups to association rules

7.1 Confidence of descriptions

The aim is to define with a minimum of additionnal calculs, the confidence of
the association rule subgroupdescription −→ model attribute = value, where
the description is simply a given subgroup description. Let S be a dataset, G a
subgroup extracted from S, t a tuple included in S and tM the projection of t
on the model space. In the case of a single n-ary attribute, we can compute that
confidence as follow :

confidence(G) = |∀t∈S,tM=value∧t∈G|
|S|

7.2 Application

We apply this transformation to the second experiment in order to define the ac-
curacy of subgroups. On the following graph, we highlight the non-correlation be-
tween subgroup set quality measure values and subgroup set quality. By quality
we mean the average confidence of the association rule subgroupdescription −→
model attribute = value for each subgroup included in a subgroup set for a given
olfactory quality.
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The greater is the confidence value, the better is the subgroup set in order
to define a given olfactory quality. We notice that the greatest values are for
weakly represented olfactory qualities in the ARCTANDER dataset.

8 Weighted quality measures adaptation

8.1 Management of subgroup size in Meantest

Weighted quality measures have the advantage to highlight the greatest sub-
groups with high priority but in many cases, interesting unusual subgroups are
really small considering their relative supports in a given dataset. This is why
we want to reconsider the weighted component of MeanTest. For this we now
consider the Meantest quality measure for a subgroup G as :

MT (G) =| G | 1n (| µG − µS |)

The value n is determined in order subgroups supports have the smaller
impact on global qualities but they still make a difference between major unusual
subgroups and the others. The ideal value provides values of | G | 1n very close
to | µG − µS | for a given subgroup set.

8.2 Application of modified MeanTest

First, we applied the modification of the MeanTest on the third experiment
presented in 4. The best value for n is 3 because a greater value induced too
small values. Actually, we had a really uninteresting distribution of Hedo number
among subgroups. With the new MeanTest we obtain the following distribution
with similar parameters :
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As we can see the distribution is better because a bit more balanced on the
entire domain of possible values but it remains unsatisfying according to the
objectives.

8.3 Characterization of extreme values with WKL

In this part, we consider a single numeric attribute as model space. The problem
shown in experiments is that Meantest is very sensitive to values distribution
on a given domain. If we want a characterization of the entire domain, the
distribution must be very balanced. But in many cases, the distribution is not
balanced and subgroups define values closed to the mean of all values in the
domain. The use of a discretization turns the numeric attribute and we can use
the WKL.

8.4 Application of WKL for extreme values characterization

We can directly apply the discretization and use WKL for the third experiment
in order to find characterizations for stinking and pleasant. The following results
are extracted after the dataset transformation and the confidence of the rule
description −→ pleasant/stinking has been computed :

– stinking with confidence 0.733 with the description Col3624 < 1.00000 and
P VSA MR 5 < 28.39950 and MATS4p > -0.24850 and Col3133 < 2.00000
and MATS3m < 0.01950 and GATS3e < 1.14400 and ATSC1s < 8.46600

– pleasant with confidence 1.0 with the description GGI5> 0.03500 and P VSA LogP 2
< 7.60400 and GATS5m < 1.18550 and Eig08 AEA(bo) < 0.50000 and X3Av
< 0.17000 and Eig10 AEA(dm) > -1.92250 and GATS3e < 1.44450 and Sp-
Min8 Bh(s) < 0.05750 and Psi i 0d > -0.01400
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Chapter 6

Conclusion

By the use of existing methods, we were able to fulfill, from an algoritmic point
of view, the objectives list proposed by the project Olfamining. We have defined
the algorithmic context with precision and study incrementally the tools which
exactly answer our problems. Some methods and algorithms have not been used
because they show limits for our case that are already kwnown. The most inter-
esting approach to answer our problem is subgroup discovery and her generaliza-
tion to multiple targets, exceptional model mining. Actually, the formalization
of a subgroup is the closest from the formalization we made in the presentation
of the introduction. Moreover, many tools already studied are used and some
works on subgroup discovery directly answer the problem of knowledge discov-
ery in numerical domains. In order to handle the target multi-labeled attribute,
we choosed to adapt this attribute to a set of binary attributes and we can mine
this set with EMM. Among subgroup discovery and exceptional model mining
works, we have chosen one of the most generic algorithm, DSSD, in order to face
different type of model spaces. The results with the implementation are under-
standable by an expert of data mining but present real problems of readability
and could lead to wrong interpretations for the experts of the data domain. This
is why we proposed post treatments in order to highlight or find meaningfull
informations in the data. We also reconsidered quality measures when they do
not fit well to our case and tried different data adaptation strategies in order to
find the best results. We can then provide readable, correct and in some case
adaptable results in function of post treatment parameters.
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